MAGNITUDES FÍSICAS

<u>Magnitud</u>: Es toda propiedad de los cuerpos que se puede medir. Por ejemplo: temperatura, velocidad, masa, peso, etc.

Medir: Es comparar la magnitud con otra similar, llamada unidad, para averiguar cuántas veces la contiene.

<u>Unidad</u>: Es una cantidad que se adopta como patrón para comparar con ella cantidades de la misma especie. Ejemplo: Cuando decimos que un objeto mide dos metros, estamos indicando que es dos veces mayor que la unidad tomada como patrón, en este caso el metro.

Sistema Internacional de unidades:

Para resolver el problema que suponía la utilización de unidades diferentes en distintos lugares del mundo, en la XI Conferencia General de Pesos y Medidas (Paris, 1960) se estableció el Sistema Internacional de Unidades (SI). Para ello, se actuó de la siguiente forma:

- En primer lugar, se eligieron las magnitudes fundamentales y la unidad correspondiente a cada magnitud fundamental. Una **magnitud fundamental** es aquella que se define por si misma y es independiente de las demás (masa, tiempo, longitud, etc.).
- En segundo lugar, se definieron las magnitudes derivadas y la unidad correspondiente a cada magnitud derivada. Una **magnitud derivada** es aquella que se obtiene mediante expresiones matemáticas a partir de las magnitudes fundamentales (densidad, superficie, velocidad).

MAGNITUDES FUNDAMENTALES

En el cuadro siguiente puedes ver las **magnitudes fundamentales del SI**, la unidad de cada una de ellas y la abreviatura que se emplea para representarla:

Magnitud fundamental	Unidad	Abreviatura
<u>Longitud</u>	<u>metro</u>	m
<u>Masa</u>	<u>kilogramo</u>	kg
<u>Tiempo</u>	<u>segundo</u>	S
<u>Temperatura</u>	<u>kelvin</u>	K
Intensidad de corriente	<u>amperio</u>	A
Intensidad luminosa	<u>candela</u>	cd
Cantidad de sustancia	<u>mol</u>	mol

Múltiplos y submúltiplos de las unidades del SI							
Prefijo	Símbolo	Potencia	Prefijo	Símbolo	Potencia		
giga	G	10 ⁹	deci	d	10 ⁻¹		
mega	M	10^{6}	centi	С	10 ⁻²		
kilo	k	10^{3}	mili	m	10 ⁻³		
hecto	h	10^{2}	micro	μ	10 ⁻⁶		
deca	da	10 ¹	nano	n	10 ⁻⁹		

MAGNITUDES DERIVADAS

En la siguiente tabla aparecen algunas magnitudes derivadas junto a sus unidades:

Magnitud	Unidad	Abreviatura	Expresión SI
<u>Superficie</u>	metro cuadrado	m^2	m^2
<u>Volumen</u>	metro cúbico	m^3	m^3
Velocidad	metro por segundo	m/s	m/s
<u>Fuerza</u>	newton	N	Kg·m/s ²
Energía, trabajo	julio	J	$Kg \cdot m^2/s^2$
<u>Densidad</u>	kilogramo/metro cúbico	Kg/m ³	Kg/m ³

Desde otro punto de vista la magnitudes se pueden clasificar en escalares y vectoriales:

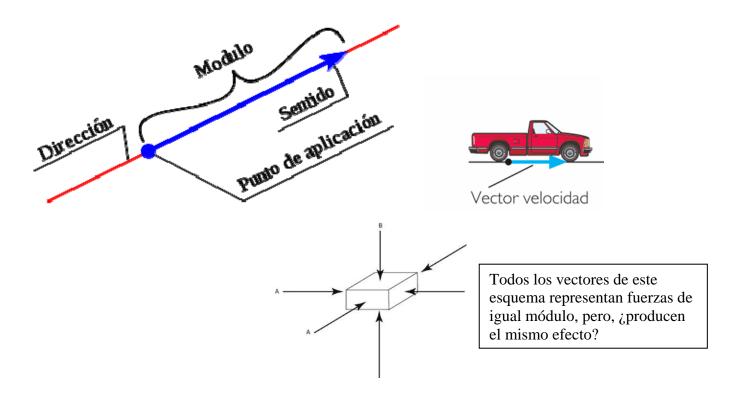
MAGNITUD ESCALAR

Es aquella que se describe completamente con un valor numérico y con una unidad de medida apropiada: Ej:.Tiempo (5 s, 2 h, 3 min); Temperatura (3°C, 273 K) Masa (3 g, 4 kg)

MAGNITUD VECTORIAL

Es aquella que se describe completamente por un valor numérico con la unidad de medida apropiada, más una dirección y sentido. Ej: Fuerza, Velocidad

Las magnitudes vectoriales se representan mediante vectores.


Elementos de un vector

Módulo: valor numérico de la magnitud vectorial. (La longitud de la flecha)

Dirección: viene definida por la recta sobre la que está el vector.

Sentido: indica hacia donde se dirige el vector. (En una misma dirección hay dos sentidos posibles)

Punto de aplicación: es el origen del vector.

ECUACIONES DIMENSIONALES.

Ecuación Dimensional.- Son aquellas que sirven para expresar la relación existente entre las magnitudes derivadas y las magnitudes fundamentales.

Forma general de la Ecuación Dimensional.- En el S.I. tiene la siguiente forma.

$$[x] = L^a M^b T^c I^d \theta^e J^f N^g$$

Donde:

x : Magnitud derivada a, b, c, d, e, f, g : Constantes numéricas

Principio de Homogeneidad Dimensional.- Toda ecuación física correcta es dimensionalmente homogénea, esto quiere decir, que cada sumando de una fórmula física debe tener la misma ecuación dimensional.

Ejm. Sea la ecuación: x = v

 $x = v_o.t + \frac{at^2}{2}$

Homogeneidad dimensional quiere decir:

$$[x] = [v_o.t] = \left[\frac{at^2}{2}\right]$$

Observaciones:

- La ecuación dimensional de números (diferente de cero) de ángulos, funciones trigonométricas, logaritmos y de constantes adimensionales es igual a la unidad.
- El exponente de una magnitud física es siempre una cantidad adimensional. (esto no significa que una magnitud física no puede aparecer en el exponente).
- La suma o diferencia de las mismas magnitudes da como resultado las mismas magnitudes.

Aplicaciones de las Ecuaciones Dimensiónales: Sirven para la Comprobación de fórmulas, Determinar las unidades de las magnitudes y Conversión de unidades

ECUACIONES DIMENSIONALES BÁSICAS					
Básicas					
Longitud	L	Intensidad de corriente eléctrica I			
Masa	M	Intensidad Luminosa	J		
Tiempo	T	Cantidad de Sustancia	N		
Temperatura	θ				
Derivadas					
Velocidad	LT ⁻¹	Área	L ²		
Aceleración	LT ⁻²	Volumen	L ³		
Densidad	ML^{-3}	Peso específico	$ML^{-2}T^{-2}$		
Fuerza, Peso, Tensión, Empuje	MLT ⁻²	Trabajo	ML^2T^{-2}		
Impulso Mecánico	MLT ⁻¹	Potencia	ML^2T^{-3}		
Calor	ML^2T^{-2}	Energía Potencial	ML^2T^{-2}		
Energía Cinética	ML^2T^{-2}	Potencia	ML^2T^{-3}		
Momento de Fuerza	ML^2T^{-2}	Presión	$ML^{-1}T^{-2}$		
Momentum Lineal	MLT ⁻¹	Caudal	L^3T^{-1}		
Aceleración angular	T ⁻²	Velocidad Angular	T ⁻¹		
Frecuencia	T ⁻¹	Carga Eléctrica	IT		
Periodo	T	Resistencia eléctrica	$L^2MT^{-3}I^{-2}$		
Capacidad eléctrica	$L^{-2}M^{-1}T^4I^2$	Permeabilidad magnética	MLT ⁻² I ⁻²		
Inductancia Magnética	L ² MT ⁻² I ⁻²	Const. Univ. de los gases ideales	$ML^2T^{-2}\theta^{-1}N^{-1}$		